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Abstract

An iterativc method is presented to solve the internal and external

camera calibration parameters, given model target points and their

images from one or more camera locations. Tile direct linear transform

formulation was used to obtain a guess for the iterative method, and

herein lies one of the strengths of the present method. In all test cases,

the method converged to the correct solution. In general, an over-

determined system of nonlinear equations is solved in the least-squares

sense. The iterative method presented is based on Newton-Raphson

for solving systems of nonlinear algebraic equations. The Jacobian is

analytically dcrivcd and tile pseudo-inverse of the Jacobian is obtained

by singular value decomposition.
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1 Introduction

Certain experimental flow visualization techniques such as the Pressure Sen-

sitive Paint (PSP), Temperature Sensitive Paint and others involve taking

images of aircraft models in a wind tunnel. Typically, these images are
taken with one or more CCD cameras from different positions and orienta-

tions. These images are then subjected to image registration algorithms and

mapped onto the model geometry. Details about registration of PSP images

are discussed by Bell [2]. The mapping of the images to the model geome-

try, essentially a mapping relationship between model and image coordinate

systems, is expressed by the equation of photogrammetry (See Marzan and

Karara [6]). The relationship between the model and image coordinates re-

quires the determination of the camera calibration parameters. The camera

calibration paramters are: (a) external or extrinsic parameters which depend

upon the location and orientation of the camera, and (b) internal or intrinsic

parameters which are the camera focai length, other lens parameters, dis-

tortion parameters, etc. The Camera parameters which are relevant to this

report are discussed in more detail in Section 2. Typically, certain control

points on the model and their projected images are known a priori. Givcn the

coordinates of the control points, the equations of projective photogramme-

try, which are nonlinear equations, are solved to yield the camcra orientation.

The most common method to solve the equations with an iterative solution

technique is termed bundle adju,stment ([5, 4]). Another technique to ob-

tain the mapping between the image and model space is the Direct Linear

Transform (DLT)method [1].

In this report, a method to solve for the camera calibration parameters
is described. The solution method uses the DLT to obtain a gnmss for the

camera parameters, and then iteratively solves the nonlinear equations us-

ing a Newton method. Thc Jacobian for the Newton iterative technique is

obtained analytically, and the inverse (or rather pseudo-inverse) Jacobian is

obtained by singular value decomposition.



2 Solution Method

2.1 Equations of Photogrammetry

Let tile model and image coordinate systems be denoted by (X,Y, Z) and

(x, y, z), respectively. The origin of the image coordinate system is located

at (Xc, Yc, Zc) in model coordinate space. The orientation of the image

coordinate system with respect to the model system is given by a 3 x 3

rotation matrix R. The nine terms rij, i = 1,2, 3 j = 1,2, 3 of R are

not independent and can be reduced to three parameters by taking the Euler

angle approach, i.e., R is a combination of three separate rotations about the

three principal axes. Let the rotation about the x, y and z axes be denoted

by co, ¢, and _, respectively. Then

R = (1)

where each individual rotation matrix is given by

(1 0 0 ] I cos¢ 0 sine
Rx(w)= 0 cosw -sinco , /_(¢)= 0 1 0

0 sin co cosco -sine 0 cos¢

cosa -sin_; 0 1
Rz(s) = sina cosa 0 .

0 0 1

One must be careful and note that the rotations do not commute. After

matrix multiplication, R is given by

cos ¢ cos g - cos co sin _c+ sin w sin ¢ cos x
R = cos ¢ sin tc cos cocos _c+ sin cosin ¢ sin

- sin ¢ sin c_cos

Note that the rows (and columns) of the above matrix form orthogonal bases

vectors, a property which will be exploited later.

In actual practice, several target locations are identified on the model and

their coordinates are measured. The model is imaged by a CCD camera. For

an ideal camera, the projection of a model point (X, Y, Z) is (z, y) in image

coordinates. However, due to image distortion, the image of the model point

is measured at (x', y').

sin w sin _ + cos w sin ¢ cos _c ]

- sin w cos s + cos w sin ¢ sin _c I "
COS 5d COS



The relationship between model and image coordinates is expressed by

the projective equation of photogrammetry[6]

2g -- Xp = 22/ -- Xp -Jr ,/_ 2J

_frll(X -- XC) + T12(Y- }Pc) -t- rl3(Z- Zc)

r31(x Xc) + r32(Y Yc) + r 3(z zc)'
y- yp = y'--yp + Ay

r_,(X - Xc) + r22(Y - Yc) + r23(Z - Zc)

-Ira,(X Xc) + r32(Y Zc) + r33(Z Zc)"
(2)

In equation (2) Ax, Ay are the terms which model the effects of symmet-

rical and asymmetrical lens distortion; Xp, yp are the image coordinates of

the principal point; and rij is the i th row and j th column element of R;

and f is the focal length of the camera. A commonly used set of functions

for Ax and Ay is

Ax = Y_(klr 2 + k2r 4 + k3r 6) + pl(r _ + 2_ 2) + 2p2_,

Ay = fj(klr 2 -4-k2r 4 + k3 r¢) -4-2pl:ry-t-p2(r 2 + 2y 2) + al:r + a2y, (3)

where :_ = x'-xp, _ = y'-y_, r _ = _2+ _)2; and k_, Pi and a_ rep-

resent radial, lens decentering, and affinity distortion terms, respectively.

The six-tuple (Xc, Yc, Zc, a_, ¢, s;) which gives the position and orientation
of the camera contains the external calibration parameters; while the ten-

tuple (kl , k2, k3, Pl ,P2, al, a2, Xp, yp, f) representing the radial, lens decenter-

ing, affinity distortion terms, the principal point, and the focal length con-

tains the internal calibration parameters.

Let the number of model target points be m. A given camera produces

images of the model from n different locations. For each camera location, the

image coordinates of a subset of the m_ model points may be measured. Let

the number of measured image points for the i th camera location be m2 < m.
The total number of unknowns are 6n + 10 where 6n are the six external

calibration parameters for n camera locations and 10 internal calibration

parameters. The total number of equations available is 2 _2i_ m_ < 2rim.

For all the test cases discussed later in this report, we encounter an over-

determined system, i.e., 2 E___ m_ > 6n + 10.

2.2 Solution Method

The over-determined system of equations governing the internal and external

calibration parameters is solved in a least-squares sense as follows. We first



recast the equations in a convenient form. Define a vector of unknowns as

_ _(XC,1 ' (I)l, XC,2 ' (I)2,..- XC,n, _II) T (4)

where Xc,i =- (Xc,i, Yc,i, Zc,i) and g2i = (wi, ¢i, tq) are the camera external

calibration parameters for the i th camera location; and

= (kl, k2, ka,pl,P2, al, a2, xp, yp, f) is the vector of the camera internal

calibration parameters. Then rewrite the equations as

= (x'j + Axj - xp)(Xj - We,i)" ra,i + f(Xi - We,i)" ÷1,i = 0 (4]i= = (y;+ ,:p)(x, - x<i) + f(x, - x<,) = o

In equation (5), l = mi-1 +j, (m0 = 0); j = 1,2,.--mi; and i = 1,2,--.n,

with the index j varying faster than index i. Furthermore, Xj is the position

vector of the j th target point, i.e., Xj - (Xj, Yj, Zj); and Xc,i is the position

vector of the i th camera, i.e,, Xc,i - (Xc,i, Yc,i, Zc,i). The unit vectors

_k,i correspond to the k th column vector of the rotation matrix R and are
functions of the i th camera Euler angles (wi, ¢i, _i).

The above system of nonlinear equations is solved in an iterative fashion

as described below. Assume the solution vector { is known at iteration 'k'.

The left-hand side of equation (5) may be expressed as a truncated Taylor

series at iteration k + 1.

05") kyk+l([) = yk({) + _- A{k, (6)

where As¢k - {k+l _ {k. In the above equation, _" is a column vector with

2 _' mi elements, the Jacobian 0br/0{ is a matrix with 2 _ mi rows and

(6n + 10) columns, and A{ is a column vector with (6n + 10) elements.

Following the Newton-Raphson iterative technique, we set _k+l = 0 and

solve for {k+l as

- -0-( (7)

where the term []-_ is the inverse (pseudo-inverse) of the Jacobian matrix

n }-_'imi > 6n +if 2 _i rrti = 6n + 10, (2 '_ 10). The elements of the aacobian
matrix are analytically determined (see Appendix A for details). At each
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iteration,wesolvea systemof linearequations.Forover-determinedsystems
(2_ mi > 6n+10) the linear system is solved in the least-squares sense. The

above iterative procedure is terminated upon convergence. It is well known

that the standard Newton-Raphson method converges if the initial guess is

sufficiently close to the solution. The initial guess for the above procedure is

discussed in detail in section 2.3.

2.2.1 Pseudo-inverse and Singular Value Decomposition

For an over-determined system (2 _ mi > 6n + 10), the Jacobian matrix

is not square. A preferred method for solving linear least-squares problems

is singular value decomposition (SVD)[9]. In general, any M x N matrix A

may be written a_s the product of an M x N column-orthogonal matrix U,

an N x N diagonal matrix W, and the transpose of an N x N orthogonal

matrix V. The system of equations A.x = b is solved in the least-squares

sense by finding x which minimizes X 2 = I[A. x - btl. The solution x is given

by

x = V. [diag(1/wj)]. U T. b, (8)

where wj is the jth diagonal element of the diagonal matrix W and are called

the singular values of A. The product of the three matrices,

V. [diag(1/wj)] • U T, in the equation above is the pseudo-inverse of A. In

our case, the pseudo-inverse of the Jacobian is calculated using SVD, and

the solution vector at _k+l is calculated in the least-squares sense as outlined

above. An added benefit of using singular value decomposition is that the

above procedure works even when the dacobian is singular or ill-conditioned.

We compute the condition number (defined as the ratio of the largest to the

smallest singular value) of the Jacobian matrix. If the inverse of the condition

number is smaller than 10-P, all singular values which are smaller than 10 -p

times the maximum singular value are set to zero. This prevents round-off

error from contaminating the solution. In our case, we choose p = 12 because

our computations are done using double precision arithmetic.

2.2.2 Convergence Criteria

The convergence criteria to terminate the iterative solution is

If k+l - I< c, (9)



where e is a "small" number determined by the user. Another alternative is

to examine the change in the Lo_ norm of the solution vector A_ k. For both

criteria, convergence is achieved in 10 - 20 iterations for e = 10 -s. In no

test case did we need to iterate more than 20 times. Convergence was not

quadratic, as one would expect for a standard Newton-Raphson technique.

Perhaps this is not surprising because we are solving the equations in a

least-squares sense, and in some cases the Jacobian matrix may have large

condition numbers.

2.2.3 Gimbal Lock

We now focus attention on the case when ¢ = _/2. The rotation matrix R

for ¢ = u/2 becomes

0 sin(w- _) cos(w- _) ]

R= 0 cos(w-_) -sin(w-_) ]. (10)-1 0 0

This shows that the solution only depends upon the difference of w and _,

i.e., the number of independent unknowns reduces by one. This is called

"Gimbal Lock". Further discussion of this issue is- given in Section 2.4.

2.3 Initial Guess

For a good optical system that does not suffer from optical distortion, the

error terms in equation (2) may be neglected. Some algebraic manipula-

tion leads to the following form, called the direct linear transform (DLT)

formulation [1],

L1X + L2Y + L3Z + L4 L_X + L6Y + LrZ + Ls (11)x-- _ Y= ,
LgX + LloY + L11Z LvX + LloY + LIIZ

where Ll'--Lll are called the DLT coefficients. Given the model target

points and their images, one solves for the DLT coefficients using the solution

procedure given in Reference [8]. The DLT coefficients for n camera locations

are obtained.

2.3.1 Estimate of Camera Position

In equation (2) the numerator and denominator are zero when X -- Xc, Y --

Yc, Z = Zc. This implies that the camera position vector Xc may be deter-
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minedby solvingthe followinglinearsystemof equations:

LIXc -{-L2Yc + LaZc + L4 = O,

LsXc + L6Yc + L7Zc -t- Ls = O,

LgXc+ LloYc+ LllZc+ l = O. (12)

2.3.2 Estimate of Camera Focal Length

Recall that one of the internal calibration parameters to bc determined is

the camera focal length f. For convenience we define some new variables as
follows:

__ L2 _fr12 L3 frl3L1 f r 1l, _2-- -- _3-- -- ,
_I -- Lv ral L9 r31 L9 r31

L2 _ _fr,2 L3 fr13L1 _ frll r]2 - r]3 = - ,
rh = Llo r3_ Llo r32 Llo ra2

_ L2 _ _fr12 L3 frl3 (13)L1 fr11 (2-- (a -- --
(1 -- Ln /'33 L11 raa Lli r33

Now we use the factthat the row and column vectorsof R are orthogonal

unit vectors.Itcan then be triviallyshown that

l I 1 1

f2 - _] + r]_?+ (-7' (14)

where (_ = (_ + _ + (3 and so on. The focal length is then calculated

by taking the positive square root of f2. In the estimation of the focal

length, an alternative is to use L4, L_, L6 and r21, r22, ra3 instead of L1, L2, La,

r11, r12, rla, respectively, in equation (13). Finally, because we have n camera

locations, we calculate n sets of DLT coefficients and n focal lengths. We

choose the starting point of the focal length of the camera as the average of

the n estimated focal lengths.

2.3.3 Estimate of Camera Orientation

We begin by using the last row of R, the calculated DLT coefficients, and

the estimated focal length to estimate the orientation Euler angles (co, ¢, _)

for each camera location. We first estimate ¢ by the following relation

f2

sin 2 ¢ = r_l = _ (15)
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We take the positivesquareroot and take the principal valuefor ¢.
other two anglesareestimatedby usingthe followingequations:

The

f2 L1 sin ¢
sin 2 aJ - cos n = (16)

rl_ cos 2 ¢' fL9 cos ¢"

For the rare case of ¢ = _r/2, we simply set ¢ = 0.951r/2. This is justified

because we are simply interested in an initial guess for ¢. This eliminates

the possibility that the denominator in equation (16) is zero. Note that

as calculated above ¢ • [0,7r/2], w • [0,7r/2] and n • [0,_-]. Using these

calculated angles, one may recalculate the focal length using the following
relations:

(17)

-L4_
f_ L17 f = --,L2_ f _ L3_', f =

1"11 ' /'12 1"13 rllXc + T12Yc + rl3Zc

L57 L6 7 LT"f -Ls7
f - ' f -- ' f -- ' f ---- X q- r22Yc q- r23Zc '?'21 r22 7"23 r21_ C

where 7 = r31Xc + r32Yc + r33Zc • The estimate of the angles are refined

by using -0, 7r 4- O, 0 - _r, (0 = ca, ¢, n), to calculate R which is then used

in equation (17). That combination of angles which gives a positive focal

length for all the above eight calculations in equation (17) is taken as the

initial guess of the orientation.

2.4 Test Cases and Uniqueness of Solution

For nonzero Ax and Ay in equation (2), there are a multiplicity of solutions.

It is unclear how many solutions are actually present. Contrived tests were

carried out with known camera calibration parameters. When the above

procedure to obtain an initial guess of the solution is adopted, the solution

obtained was always the correct one. For some contrived tests, if the so-

lution vector was initialized to arbitrary quantities, the converged solution

was not the correct one. In some cases, the solution converged to a very

small focal length with large distortion parameters. It is recommended that

the image points be recomputed once the camera calibration parameters are
determined. Then a calculation of the root-mean-square error between the

computed and the given image point coordinates is performed. For model

and target points provided by Bell [3] for the B-70 and Boeing airplane test

data, the root-mean-square error was always less than one pixel.
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If Ax -- Ay = 0 and if the focal length is provided, then the above
iterative procedureconverges to a unique solution. Of course, the solution

for the orientation angles is unique up to an additive constant. It is trivial

to ensure that the angles always lie between -27r and 27r.

For cases of Gimbal lock, tests indicated that the solution converges to

arbitrary values of ca and s, while the correct difference between these two

angles is always attained. Thus, nothing special is done for the case when ¢ =

7r/2. The reader is simply cautioned that the difference ca-_ is important and

not the individual values. Because we are eventually interested in mapping

between the image and model spaces, the mapping obtained even in the ease

when we have gimbal lock is correct.

Finally, we note that the above solution procedure was coded into a C-

program library which may be obtained by sending electronic mail to the

author. The library was made flexible enough so that, in the event the

code converges to an undesirable solution (which is discerned quickly by an

examination of the root-mean-square error between measured and calculated

image point locations), the user may specify an initial guess for the solution.

We now present two specific sample calculations. The data used in these

sample calculations is presented in tabular form, and the interested reader

may obtain the numerical values by sending electronic mail to the author.

2.4.1 Example 1- Joukowski Wing Dataset

A dataset was artificially generated to mimic the situation encountered in

pressure sensitive paint experiments. Basically, we created a wing using sev-

eral two-dimensional cross sections, each of which was a Joukowski airfoil [7].

Then we sprinkled 46 target control points in a random fashion on this wing.

A camera was placed at four different stations. The resulting four images,

each of size 512 x 512 pixels, are shown in Figure 1. The target points, and

their locations in the images are given in Table (1), and Tables (2)-(5), re-

spectively. Note that the image coordinates, in pixels, are usually scaled by

a certain factor in order to operate in the same units as the model. In this

example, the scale factor was 1/512. The above method was used to deter-

mine the camera calibration parameters and the results are given in Table

(6). In this contrived example, in 7 iterations 15ck+_ - 5rkl = 5.7 x 10 -s and

in 8 iterations 19vk+l -_'k t = 1.3 x 10 -15. Furthermore, in this example in

8 iterations we also achieved [.T'k+l I < 10 -_5. Another point to note in this

example, is that, for station numbered 'l', the orientation angle ¢ = 90 ° and
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thereforewehavea gimballock. The imagesweregeneratedusingw = 0°
and _c = 50 °. The solution obtained shows w = 1.381 ° and _ = 51.381 ° so

that the difference between these angles is still 50 ° as it should be for the

gimbal lock case. The internal parameters are very small as they should be

in this example.

2.4.2 Example 2: Boeing Airplane Dataset

Data in the form of target point locations and their images was provided by

Bell [3] for a Boeing airplane. The target points are given in Table (7). Of

course, the units are normalized so that they do not correspond to the real

dimensions of the actual model in the experiment. Three images, each of size

512 x 1024 pixels, were provided. The coordinates of the target points for each

of the three images are given in Tables (8)-(10). The image coordinates were

scaled by a factor 9.4488 x 10 -4. The above method was used to determine

the camera calibration parameters, and the results are given in Table (11).

In this example, convergence is achieved in l0 iterations when we obtain

lY"k+l - 5rkl = 3.66 x 10 -9. The Lo_ norm of Y"settled down to 0.051818 after

6 iterations. Also shown in Tables (8)-(10) are the calculated coordinates of

the target points in the images using equation (2). The root-mean-square

error between the calculated and the measured locations of the image points

is less than 0.2 pixels.

3 Conclusion

In this report, we have presented an iterative method to solve the internal

and external camera calibration parameters given model target points and

their images from one or more camera locations. The direct linear transform

formulation was used to obtain a guess for the iterative method, and herein

lies one of the strengths of the present method. In all test cases, the method

gave the correct solution without user intervention in selecting a good initial

guess. Sufficient details are given in the report, including detailed analytical

expressions for the Jacobian, to enable one to write a computer program.

Alternatively, a C-library which uses the present method to determine the

camera calibration parameters may be obtained by sending electronic mail

to the author.



13

Figure 1: Imagescorrespondingto the four differentcameralocations.The
blackdots on the imagescorrespondto the target points. The color corre-
spondsto the cocfficientof pressurefor thewingwith red (blue)correspond-
ing to high (low) values.
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4 Appendix A: Derivation of the Jacobian

The Jacobian matrix in equation (6) is given by

OF

OF aF 0 0 ...
c_1 8(Ih

oa 0 0 ...
cOXc, a O_l

0 0 aF aF ...
8)_2 O_OG

0 0 axe---5 a¢--7_ "'"
• o, , ...........

0 0 0 0 ...

0 0 0 0 ...

0

0

0 0

0 0

aF 8F

OXc ,n a'_ n

OF

0 aa
OF

OG
-ff_ ,

, • ,

aF
a_
aG
a_

(18)

Each row of the Jacobian matrix consists of 6n + 10 entries, of which 6n - 6

entries are zero. The derivatives of F (and G) with respect to Xc#, aPi and

ko are row vectors with 3, 3, and 10 elements, respectively. These derivatives

are given below.

OF

OXc

0a (19)
OXc

where

0/_1 __ [-b--_--

OF

OG

0_3
(x - x.)(x - xc) . -f4

0÷3

(y- yp(x- x_). -_

+ f(X - A'c). 04)'

072
+ f(X- Xc)..Oc b,

(20)

0

sin w sin _ + cos w sin ¢ cos

cos w sin _ - sin w sin ¢ cos

- sin ¢ cos

sin w cos ¢ cos

COS _ COS q_ COS/_

- cos ¢ sin _ ]

- cos w cos _ - sin w sin ¢ sin n ] ,sin w cos a - cos w sin ¢ sin
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0?2_ [ 00--_ - - sin aJ cos s; + cos w sin ¢ sin n
- cos w cos n - sin w sin ¢ sin n

- sin ¢ sin t_

sin w cos ¢ sin

cos _ cos ¢ sin

cos¢ cos_ ]

- cos w sin n + sin w sin ¢ cos t_ ] ,sin w sin t_ + cos w sin ¢ cos n

0 cos 0]= coswcos¢ -sinwsin¢ 0 .
cos a_cos ¢ sin _ - cos w sin ¢ 0

The derivatives with respect to the internal calibration parameters are given
below:

OF

Ok_
OF

Opl
OF

Oal

OF

Oxp

OF

Oyp
OF

of

and

OG

Ok_
OG

@2
OG

Oal

OG

Oxp

OG

Oyp

OG

of

(X - Xc) • ?3 _r 2,

(x- xc).73 (r2+ 2:),

OF
- O, - O,

Oa2

- -(x- xc)- :3

- (x-xc).?3--

- (x- xc)-71,

OF OF

_ (x - xc). 73_, ok--_= (x - xc). 73_r 6,Ok2
OF

_.op--= (x - xc) . ?3 2_9,

1 OAx_

OAx

Oyp'

(x - x_). 72

(21)

- (x - xc)-?3 9,

(22)
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where

OAx

Oxp
OAx

Oyp

OAy

OXp

OAy

Oyp

(kl+k2r2+k3r4)r 2 - 222(ki+2k2r2+3k3r 4) - 6p12-2p2_,

- -22_(kl + 2k2r 2 + 3k3 rn) - 2p1_ - 2p22,

- -22_(kl+2k2r2+3k3 r4) - 2p1_- 2p22-al,

(23)

(kx+k2r2+k3r4)r 2 - 292(kl+2k2r2+3k3 r4) - 2pl2 - 6p2_ - a2.
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Table 1: Targetlocationsfor the Joukowskiwing dataset(Example1).

No. TargetLocations No. TargetLocations
X Y Z X X Z

1 3.205 -0.097 -12.750 24 -2.144 0.062 -6.750
2 2.289 -0.107 -3.375 25 -2.054 0.124 -9.000
3 2.099 -0.135 -1.875 26 -1.899 0.224 -11.625
4 2.134 -0.225 -3.375 27 -1.614 0.332 -12.375
5 2.925 -0.651 -14.250 28 -1.121 0.211 -1.875
6 2.397 -0.587 -i0.I25 29 -0.897 0.352 -5.250
7 1.505 -0.190 -0.750 30 -0.587 0.586 -10.125
8 1.829 -0.589 -8.250 31 -0.197 0.824 -13.875
9 1.225 -0.291 -2.625 32 0.192 0.951 -14.625
10 1.095 -0.386 -4.500 33 0.339 0.711 -7.875
11 0.648 -0.162 -1.125 34 0.674 0.789 -8.625
12 0.910 -0.781 -13.125 35 1.124 0.966 -11.625
13 -0.304 -0.334 -8.250 36 1.280 0.840 -9.000
14 -1.007 -0.315 -12.750 37 1.030 0.416 -1.125
15 -1.356 -0.170 -10.500 38 2.097 0.990 -13.125
16 -1.558 -0.022 -4.875 39 2.090 0.779 -9.750
]7 -2.038 -0.062 -11.625 40 2.391 0.754 -10.875
18 -1.827 0.019 -1.125 41 2.839 0.766 -13.875
19 -2.035 0.011 -2.625 42 2.131 0.352 -4.125
20 -2.222 0.005 -4.125 43 1.939 0.185 -0.750
21 -2.098 0.001 -1.500 44 3.168 0.348 -13.125
22 -2.354 0.001 -5.250 45 2.795 0.162 -8.625
23 -2.454 0.009 -7.500 46 2.999 0.048 -10.500
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Table2: Coordinatesof targetpoints in the imagecollectedby the camera
at station 1 for the Joukowskiwing dataset(Example1). The imageis of
size512× 512,and the imagecoordinatesarein pixels.

No. ImageCoordinates No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

x y
190.662 146.457
107.044 256.018
95.147 272.707
109.632 257.106
212.553 136.367
174.584 185.310
90.885 284.589
160.174 207.777
110.841 265.472
129.142 246.778
101.105 279.287
208.778 161.670
167.772 210.771
205.799 170.129
187.955 191.079
144.309 241.727
197.497 182.269
117.047 275.284
129.630 261.814
141.855 248.571
121.703 271.856
150.844 238.776
167.733 219.143

ImageCoordinates
x y

24 160.456

25 176.300

26 194.569

27 I98.479

28 116.458

29 140.216

30 175.208

31 201.894

32 205.808

33 151.325

34 155.103

35 177.012

36 154.601

37 92.015

38 186.246

39 157.572

40 166.679

41 192.987

42 110.244

43 82.843

44 189.287

45 149.809

46 168.010

224.876

204.277

179.656

171.013

267.469

234.806

I86.178

146.481

135.855

204.287

195.114

160.952

188.768

274.746

139.137

178.074

164.445

127.665

243.567

281.860

137.977

193.604

172.339
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Table3: Coordinatesof targetpoints in the imagecollectedby the camera
at station 2 for the Joukowskiwing dataset(Example1). The imageis of
size512x 512,andthe imagecoordinatesarein pixels.

I
1

4

8 I

9 ]

10 I

11

12

13

14

15

16

17

18

19

20

21

22

23

Image Coordinates No.

x y
273.318 266.992

253.257 393.849

249.113 416.495

251.268 394.358

272.096 246.787

261.764 299.804

239.547 434.061

252.447 324.952

237.834 405.564

238.230 377.750

227.792 427.650

245.354 258.497

223.538 322.788

219.798 262.095

212.420 291.232

201.994 369.081

205.038 275.874

192.432 425.380

191.853 402.181

191.578 379.572

189.092 419.533

191.506 363.001

193.621 330.905

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Image Coordinates

x y
196.820 341.550

201.420 310.587

207.185 276.344

211.936 267.293

204.016 412.877

212.029 362.831

222.415 297.045

231.513 251.418

236.943 243.310

231.682 327.042

236.750 317.417

245.249 280.090

244.725 313.051

2331126 423.883

258.276 263.039

255.563 304.222

260.278 290.383

268.050 254.517

251.325 380.749

245.391 431.519

272.227 263.058

264.379 319.792

268.712 295.485
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Table4: Coordinatesof target pointsin the imagecollectedby the camera
at station 3 for the Joukowskiwing dataset(Example1). Tile imageis of
size512 x 512, and the image coordinates are in pixels.

No. Image Coordinates No. Image Coordinates

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

x y
337.370 315.663

338.494 193.709

338.016 172.490

336.123 193.743

331.017 329.827

329.749 280.974

331.159 156.270

324.820 257.256

324.480 182.952

320.130 208.458

318.596 161.344

307.405 313.285

297.457 255.452

284.349 308.228

281.972 281.989

284.542 211.460

272.525 294.754

284.647 160.137

280.418 180.911

276.576 201.061

280.674 165.361

273.887 215.788

270.691 244.470

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

x y
275.158 235.344

274.256 263.767

273.800 296.027

276.530 305.758

293.282 170.472

292.566 216.949

291.402 280.842

292.451 328.188

296.587 338.494

306.162 253.432

309.823 263.852

312.269 303.571

317.657 269.655

324.532 159.827

323.479 323.971

327.750 280.318

330.297 295.116

332.208 333.185

335.878 203.741

338.005 155.220

337.050 322.356

338.187 264.851

338.046 288.547
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Table5: Coordinatesof target pointsin the imagecollectedby the camera
at station 4 for the Joukowskiwing dataset (Example1). The imageis of
size512x 512,andthe imagecoordinatesarein pixels.

No. Image Coordinates No. Image Coordinates

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

x y
337.370 315.663

338.494 193.709

338.016 172.490

336.123 193.743

331.017 329.827

329.749 280.974

331.159 156.270

324.820 257.256

324.480 182.952

320.130 208.458

318.596 161.344

307.405 313.285

297.457 255.452

284.349 308.228

281.972 281.989

284.542 211.460

272.525 294.754

284.647 160.137

280.418 180.911

276.576 201.061

280.674 165.361

273.887 215.788

270.691 244.470

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

x y
275.158 235.344

274.256 263.767

273.800 296.027

276.530 305.758

293.282 170.472

292.566 216.949

291.402 280.842

292.451 328.188

296.587 338.494

306.162 253.432

309.823 263.852

312.269 303.571

317.657 269.655

324.532 159.827

323.479 323.971

327.750 280.318

330.297 295.116

332.208 333.185

335.878 203.741

338.005 155.220

337.050 322.356

338.I87 264.851

338.046 288.547
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Table 6: Cameraparametersfor the Joukowskiwing dataset (Example1).
Note that the RMSerror and the principal locations(xp,yp) are in pixels,

while the orientation angles are in degrees.

Parameter Station 1 Station 2 Station 3 Station 4

Xc

Yc
Zc
_d

¢
t_

kl

k2

k3

pl

p2

al

a2

Xp

Yp
f

x RMS

y RMS

Error

Error

20.000

-8.000

-10.000

1.381

90.000

51.381

-4.053E-7

-2.179E-6

4.107E-5

1.052E-9

8.859E-8

-2.334E-9

-6.064E-9

1.000

1.000

0.500

5.040E-6

3.866E-6

0.000

-20.000

-10.000

-80.000

5.000

5.000

-4.053E-7

-2.179E-6

4.107E-5

1.052E-9

8.859E-8

-2.334E-9

-6.064E-9

1.000

1.000

0.500

3.470E-06

2.788E-06

0.000

20.000

-5.000

80.000

-10.000

5.000

-4.053E-7

-2.179E-6

4.107E-5

1.052E-9

8.859E-8

-2.334E-9

-6.064E-9

1.000

1.000

0.500

4.070E-06

2.388E-06

-10.000

10.000

0.000

60.000

30.000

45.000

-4.053E-7

-2.179E-6

4.107E-5

1.052E-9

8.859E-8

-2.334E-9

-6.064E-9

1.000

1.000

0.500

3.535E-06

6.169E-06
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Table7: Targetlocationsfor a Boeingairplanedataset(example2).

Targetlocations
X Y Z

1607.182
2032.488
2034.920
2290.974
2289.736
2456.156
2573.540
2577.158
2820.132
2783.998
2717.762
2874.836
1903.644
2088.480
2178.304
2426.106
2645.676
2869.044

115.070
97.430
262.636
93.098
336.418
235.920
92.632
422.288
208.338
373.076
551.874
741.880
245.944
322.896
350.492
435.612
604.052
568.930

227.882
231.272
221.354
231.192
219.346
226.210
224.990
220.214
215.554
219.732
221.234
221.912
213.790
197.480
198.340
198.062
202.698
213.628
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Table8: Measuredand calculatedimagelocations,in pixels, for cameraat
station 1for the Boeingdataset(Example2).

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

26

Measured Calculated

x y
462.362 103.700

472.600 367.667

373.792 370.304

473.892 521.270

331.696 519.208

389.500 614.500

471.167 680.571

285.167 677.500

403.333 807.333

313.056 786.139

216.000 748.083

120.611 822.389

383.222 291.444

339.267 401.867

323.783 454.317

277.933 592.467

189.500 707.500

210.500 822.500

Xcalc Ycalc

462.369 103.701

472.791 367.531

373.621 370.230

473.837 521.459

331.713 519.089

389.474 614.347

470.999 680.585

285.035 677.350

403.382 807.255

313.192 786.158

216.262 748.666

120.641 822.225

383.156 291.502

323.947 454.114

339.303 402.114

277.922 592.604

189.416 707.300

210.319 822.526
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Table9: Measuredandcalculatedimagelocations,in pixels,for cameraat
station2 for the Boeingdataset(Example2).

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Measured Calculated

x y

455.778 154.861

471.736 358.264

374.000 363.583

478.204 501.444

327.167 503.429

387.903 601.097

481.600 677.000

267.042 675.137

403.000 840.905

292.892 811.175

179.104 761.340

51.852 858.571

384.111 299.444

338.889 398.556

321.444 446.444

265.056 586.333

153.389 716.611

162.944 861.944

Xcalc Ycalc

455.800 154.794

471.947 358.090

373.839 363.730

478.263 501.570

327.124 503.329

387.768 601.140

481.429 676.947

266.967 675.094

403.168 840.768

292.935 811.069

179.548 761.946

51.845 858.545

384.075 299.653

338.954 398.631

321.520 446.285

265.005 586.267

153.220 716.359

162.700 861.915
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Table10:Measuredandcalculatedimagelocations,in pixels,for cameraat
station3 for the Boeingdataset(Example2).

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Measured Calculated

x y

456.611 144.778

471.905 359.000

374.000 364.345

477.750 506.250

327.833 507.571

388.000 606.738

479.958 682.204

269.861 680.139

403.000 842.329

296.000 813.905

185.056 765.151

63.179 860.000

383.867 297.233

338.917 399.250

321.611 448.611

266.833 590.445

158.933 720.467

170.681 862.7i5

Xcalc Ycalc

456.536 144.796

472.068 358.931

373.749 364.338

477.665 506.364

327.716 507.587

387.969 606.672

479.854 682.244

269.660 680.114

403.149 842.443

296.116 813.729

185.312 765.781

63.179 859.858

383.903 297.258

338.986 399.362

321.843 448.401

266.906 590.426

158.887 720.118

170.500 862.758
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Table11: Cameraparametersfor theBoeingdataset(example2). Notethat
the RMSerrorsaregivenin pixels,while the orientationanglesaregivenin
degrees.

Parameter Station1 Station2 Station3
Xc

Yc
Zc
o.)

¢
t_

kl

k2

k3

pl

P2

al

as

xp

Yp
f

x RMS Error

y RMS Error

2056.68

209.00

1961.96

-8.821

8.948

88.806

0.163

-0.435

0.901

9.063 E-3

0.003

-5.496 E-3

4.362 E-4

-3.814 E-3

0.031

0.955

0.124

0.191

2881.36

201.18

1763.88

-9.476

-18.402

93.089

0.163

-0.435

0.901

9.063 E-3

0.003

-5.496 E-3

4.362 E-4

-3.814 E-3

0.031

0.955

0.160

0.187

2773.12

197.04

1814.32

-9.434

-14.592

-24.335

0.163

-0.435

0.901

9.063 E-3

0.003

-5.496 E-3

4.362 E-4

-3.814 E-3

0.031

0.955

0.143

0.192


